

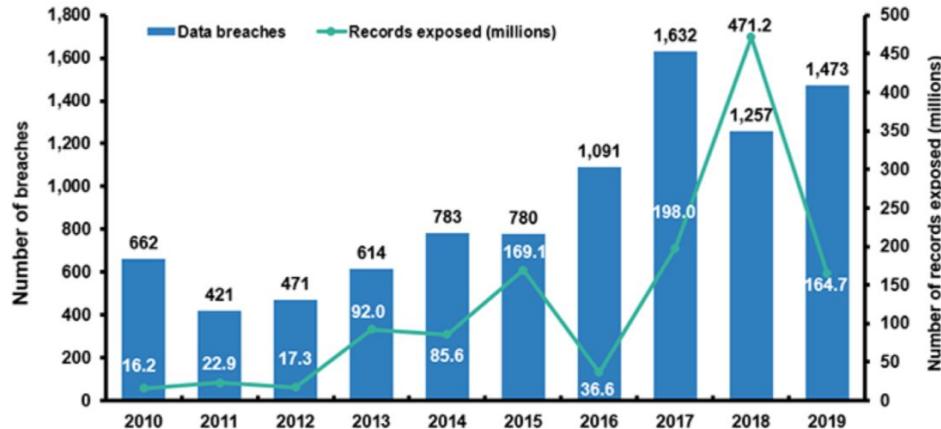
A.D. 1308
unipg

DIPARTIMENTO
DI MATEMATICA E INFORMATICA

DIGITAL IDENTITIES AND IAM

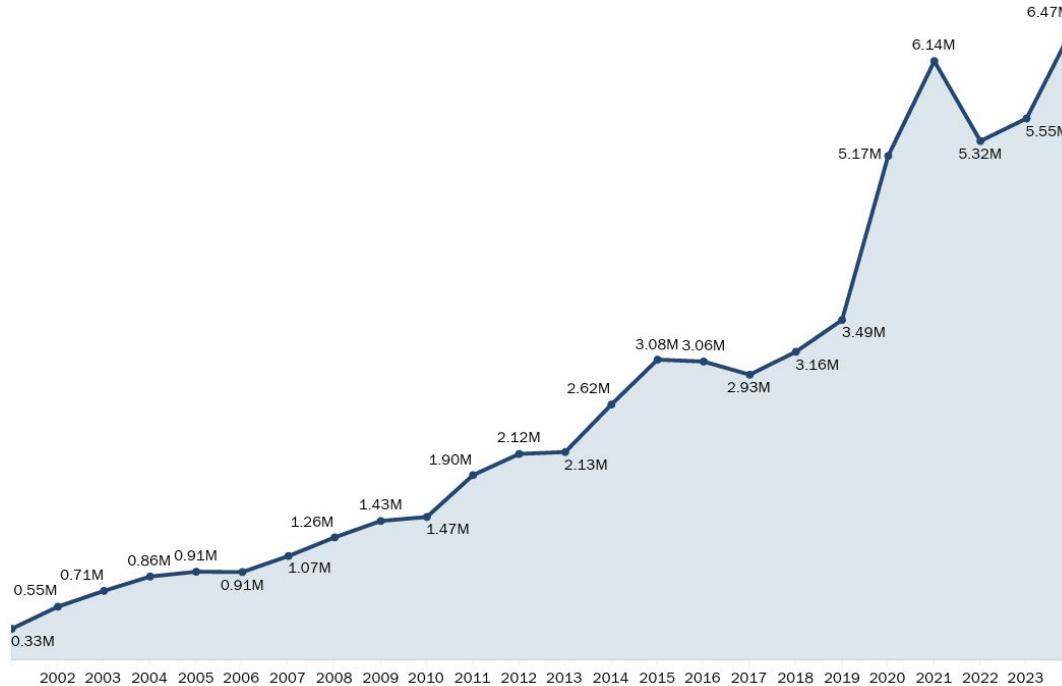
Cybersecurity with Laboratory

Digital Identities


Identity Theft

Identity theft occurs when someone uses another person's personal **identifying information**, like their name, identifying number, or credit card number, **without their permission**, to commit fraud or other crimes.

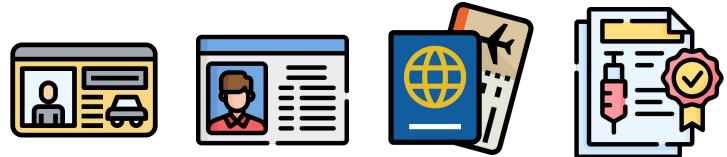
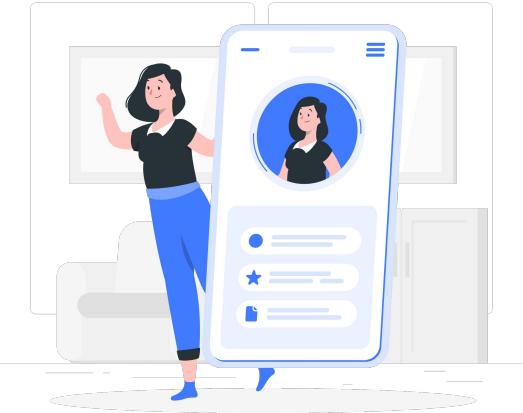
Identity Theft and Fraud


In 2019, **14.4 million** consumers became victims of identity fraud. Overall, 33 percent of U.S. adults have experienced **identity theft**, which is more than twice the global average. More than one in four older adults, aged 55 and over, have experienced identity theft.

Source: [Identity Theft Resource Center](#)

Identity Theft and Fraud

Number of Fraud, Identity Theft and Other Reports by Year

Source: [Consumer Sentinel Network Data Book](#)

Digital Identity

A digital identity is **information** on an **entity** used by computer systems to **represent** an **external agent**. That agent may be a person, organization, application, or device. ISO/IEC 24760-1 defines identity as "**set of attributes related to an entity**".

- They contain the **minimum of attributes** needed in that context
- Useful for **assessment** and **authentication**

Identity, identifier and account

The term “**identifier**” refers to a **single attribute** whose purpose is to **uniquely identify** a person or entity, within a **specific context**.

- email addresses,
- passport numbers,
- driver's license numbers,
- employee numbers.

*Nonhuman entities, such as agents, bots, or devices, may be identified by an **alphanumeric string of characters** assigned at their time of creation or registration within a context where they will act.*

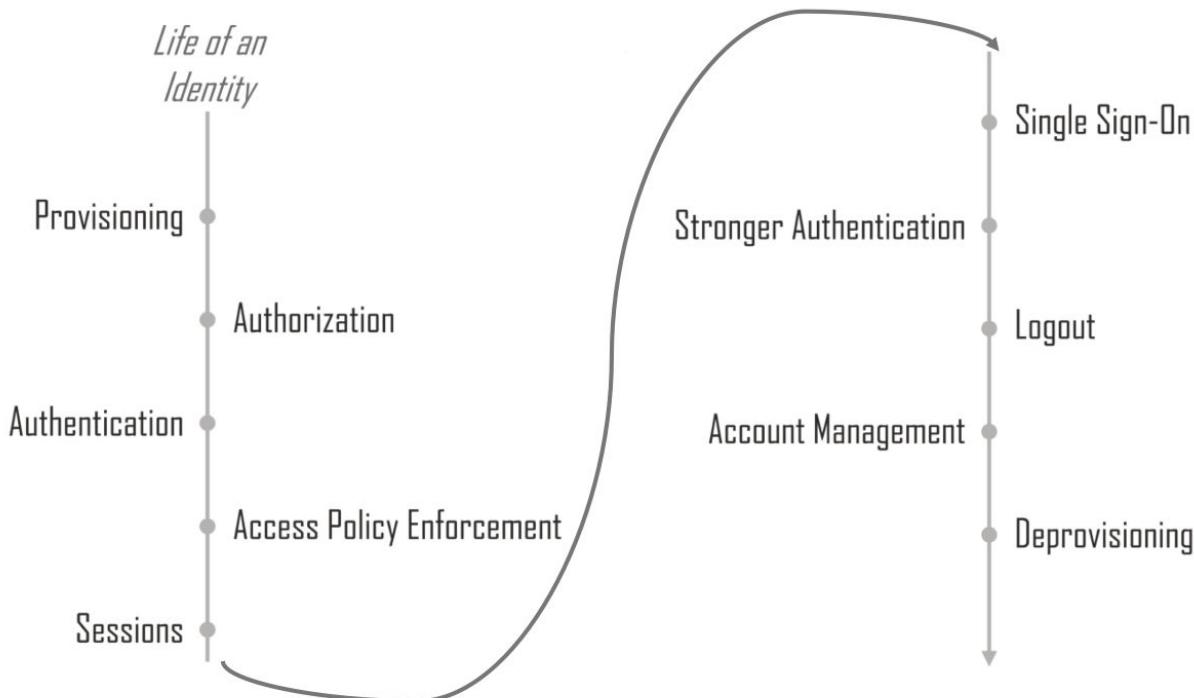
Attributes

- Human identities may include attributes such as **name, age, address, phone number, eye color, and job title.**
- Nonhuman identities may include attributes such as an owner, **IP address.**
- The attributes which make up an identity may be used for authentication and authorization

*An online identity consists of **at least one identifier** and a **set** of **attributes** for a user or entity in a particular context, such as an application or suite of applications.*

Account

- An identity is associated with an **account** in each such context.
- Identity attributes may be **contained** within an application's account object, or they may be **stored separately** and referenced from the account object.


An account is defined as a **local construct** within a **given application** or **application suite** that is used to perform **actions** within that context.

Separation between ID/Account

- An account may have its own identifier in addition to that of the identity associated with it.
- Having an account identifier separate from the identity associated with the account provides a **degree of separation**.
- The account identifier can be used in other application records to **make it easier for users to change the username** or other identifier associated with their account.
- It should be noted that **an account can have more than one identity associated with it through account linking**.
- **Nonhuman actors can certainly have identities as well.**

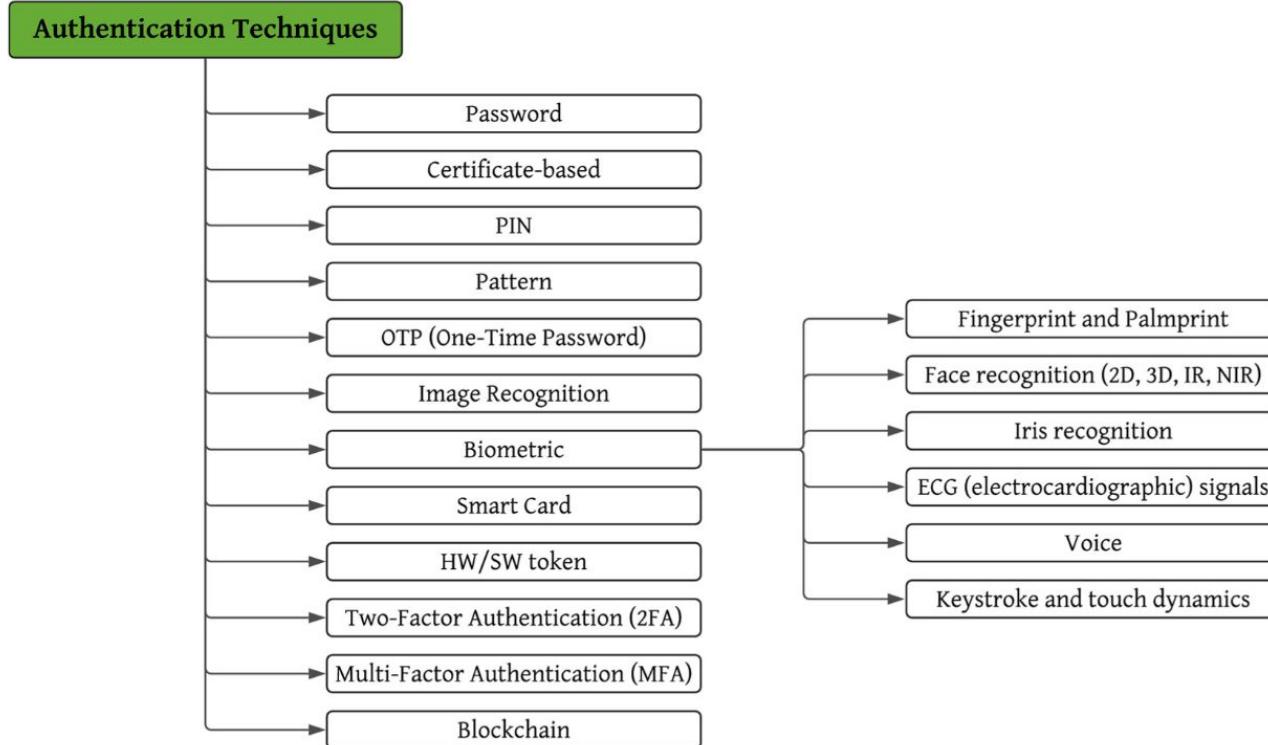
Events in an identity life

Provisioning

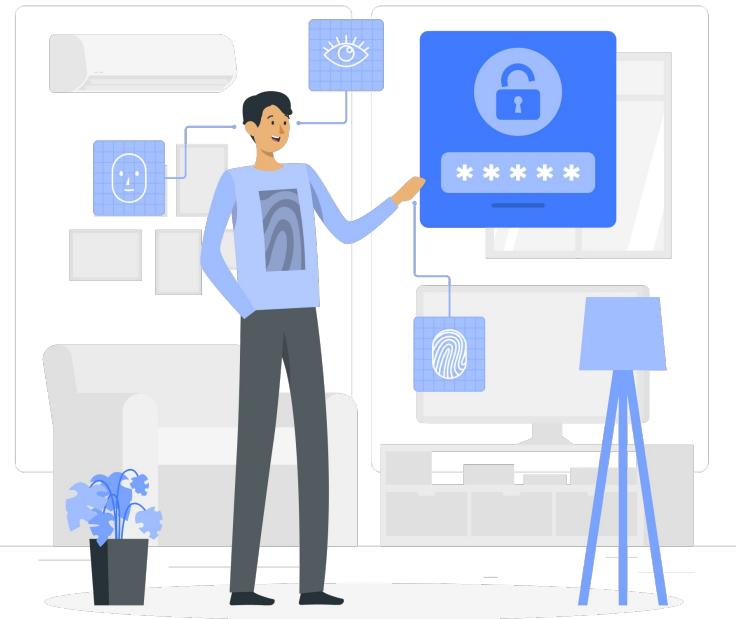
- The act of **creating an account** and associated identity information is often referred to as **provisioning**.
- The objective of the provisioning phase is to establish an account with associated identity data.
- It involves **obtaining or assigning a unique identifier for the identity**, optionally a **unique identifier for the account** distinct from that of the identity, **creating an account** and **associating identity profile attributes with the account**.

Authorization

- When an account is created, it is often necessary to specify **what the account can do**, in the form of privileges.
- We use the term **authorization** for the **granting of privileges** that govern what an account is **allowed to do**.
- Authorization for an account is typically done at the time an account is **created** and may be **updated** over time.

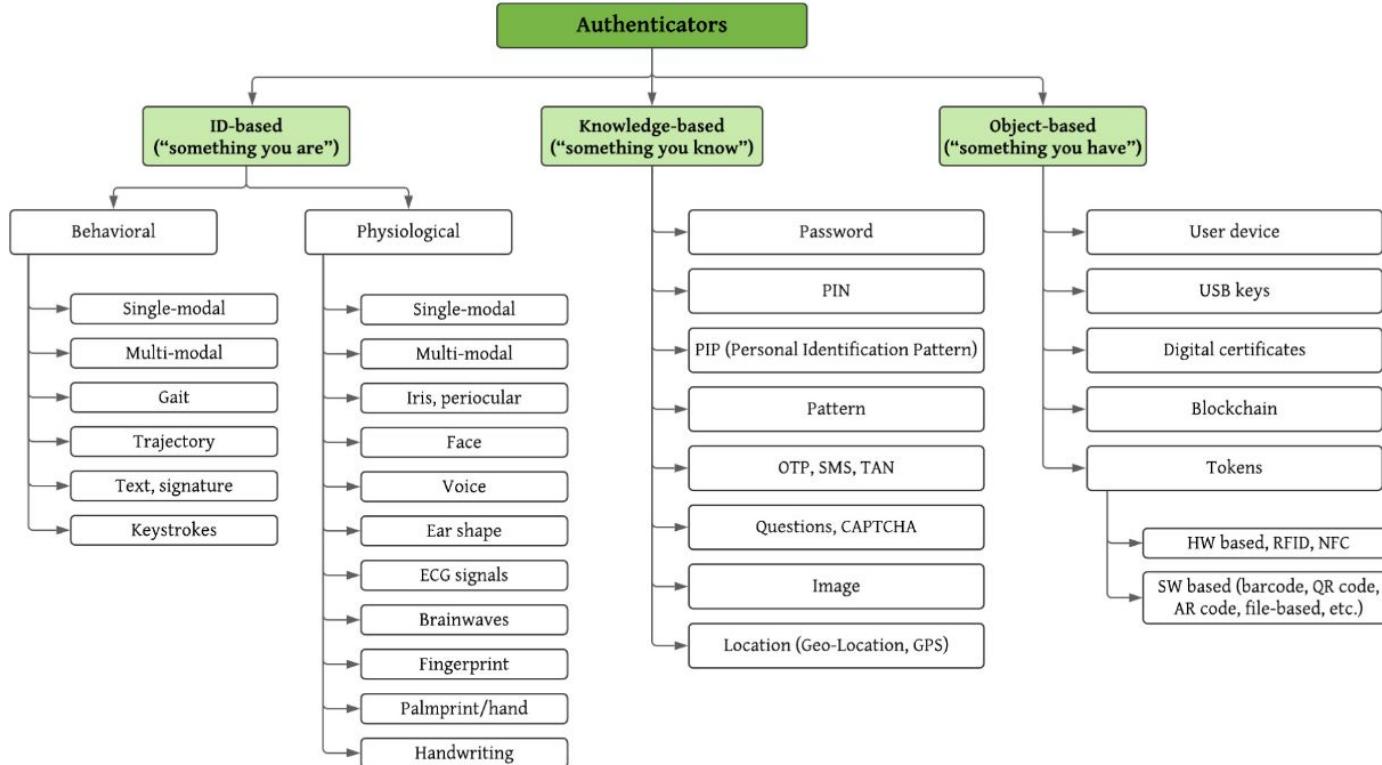

Authentication

- A user provides an identifier to indicate the account they wish to use and enters login credentials for the account.
- These are validated against credentials previously registered during the account provisioning phase.


*Authentication is a key aspect of trust-based identity attribution, providing a **codified assurance** of the identity of one entity to another. Someone (or something) authenticates to **prove that they're the user they claim to be.***

Authentication Techniques

The general authentication techniques [\[13\]](#).

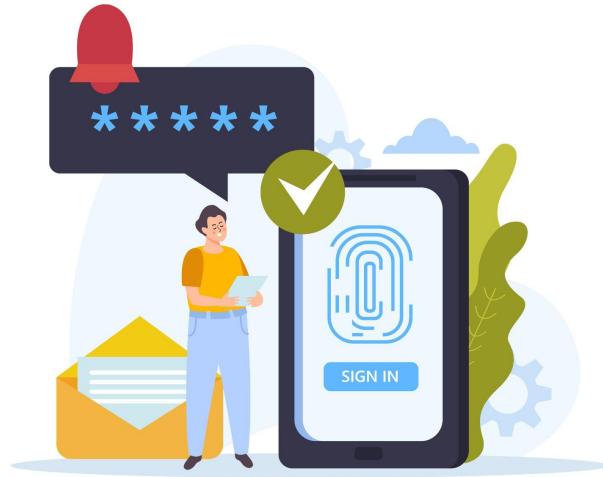

Authentication Factors

Authentication factors are **methods** for proving a user's identity. They commonly fall into these basic types:

- **Knowledge:** “*something you know*” (ex. pin or password).
- **Possession:** “*something you have*” (ex. mobile phone, encryption key device).
- **Inherence:** “*something you are*” (ex. fingerprint, facial recognition, iris scan).

Authenticators

Classification of the authenticator types [\[13\]](#).


Multi-factor authentication

Multi-factor authentication

(MFA) is a user verification method that requires more than one type of authentication factors.

MFA factors:

- Push notifications
- SMS notifications
- One-time passwords

Multi-channel protocol: A protocol where messages are sent on two or more at least **independent** channels.

Authentication vs. authorization

Authentication	Authorization
Determines whether users are who they claim to be	Determines what users can and cannot access
Challenges the user to validate credentials (for example, through passwords, answers to security questions, or facial recognition)	Verifies whether access is allowed through policies and rules
Usually done before authorization	Usually done after successful authentication
Generally, transmits info through an ID Token	Generally, transmits info through an Access Token
Generally governed by the OpenID Connect (OIDC) protocol	Generally governed by the OAuth 2.0 framework

Access Policy Enforcement

An access control system **validates an identity access** to a computing **resource**, which can be a service, storage space or online resource.

- Authorization specifies what a user or entity is allowed to do, and access policy enforcement checks that a **user's requested actions** are **allowed** by the **privileges they've been authorized to use**.
- An **Access Policy** defines the **permissions** and **duration** of **access** to an Asset.

Access Control models

- **Discretionary Access Control (DAC):** method of limiting access to resources (such as data sets) based on the **identity of users** or **groups** to which the users belong. **End users** have **total control** over their resources.
- **Mandatory Access Control (MAC):** a method of limiting access to resources based on the **sensitivity of the information** that the resource contains and the **authorization** of the **user** to access information with that level of sensitivity. You define the sensitivity of the resource by means of a **security label** (ex. Top Secret, Secret, Restricted, Confidential, or Internal).
- **Attribute-Based Access Control (ABAC):** policies consider **user attributes**.
- **Role-based Access control (RBAC):** an access mechanism defined based on the concepts of **role and permission**.
- **Originator Control (ORCON):** hybrid between MAC and DAC. Control privileges on an object can only be changed by the “**originator**” of the object.

Access Control models

AC Type	Description	Control Criterion	Who decides access	Notes
Discretionary Access Control (DAC)	Limits access to resources based on user or group identity.	User or group identity .	The resource owner (end user).	The user has full control over their own data.
Mandatory Access Control (MAC)	Restricts access based on the sensitivity of information and user authorization .	Sensitivity level (e.g., Top Secret, Confidential).	The system or security administrator.	Uses security labels to classify data (e.g. <i>Bell-LaPadula</i> model).
Attribute-Based Access Control (ABAC)	Determines access based on attributes of users, resources, and context.	Attributes (e.g., role, location, time, device).	System-defined policies.	Flexible and dynamic (defined in NIST SP 800-162).
Role-Based Access Control (RBAC)	Grants permissions based on organizational roles .	User's assigned role .	Administrator who defines roles and permissions.	Efficient for organizations, standardized in NIST RBAC (2004).
Originator Control (ORCON)	Hybrid between MAC and DAC; only the originator of a resource can change access privileges.	Origin and authorization level of the object.	The originator (creator) of the resource.	Ensures ongoing control by the creator, often used in defense contexts.

Sessions

- Some applications, typically traditional web applications and sensitive applications, only allow a user to **remain active for a limited period** of time before requiring the user to authenticate again.
 - A session tracks information
- The **session timeout** settings will typically vary by the sensitivity of the data in the application.

Single Sign-On

Single sign-on (SSO) is a mechanism that uses a **single action of authentication** to permit an authorized user to access all related, but independent software systems or applications **without being prompted to log in again** at each of them during a particular session.

- After a user accesses one application, they may wish to do something else involving another application.
- SSO is the ability to **log in once** and then access additional protected resources or applications with the **same authentication requirements**, without having to **re-enter credentials**.
- Single sign-on is possible when a set of applications has **delegated authentication to the same entity**.

Stronger authentication

- **Step-up authentication** is the act of **elevating** an existing authentication session to a higher level of assurance by **authenticating with a stronger form of authentication**.
- For example, a user might initially log in with a username and password to establish an authentication session.
- Later, upon accessing a more sensitive feature or application with **higher authentication requirements**, the user would be prompted for additional credentials, such as a **one-time password** generated on their mobile phone.

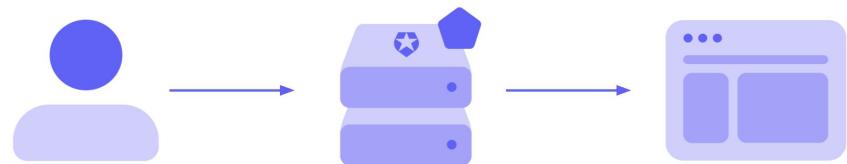
Logout

- At a minimum, the act of logging out should terminate the **user's application session**.
- If they return to the application, they would have to authenticate again before being granted access.
- In situations where **single sign-on** is used, there may be **multiple sessions to terminate**.
 - It is a design decision as to which sessions should be terminated when the user logs out of one application.

Account Management and Recovery

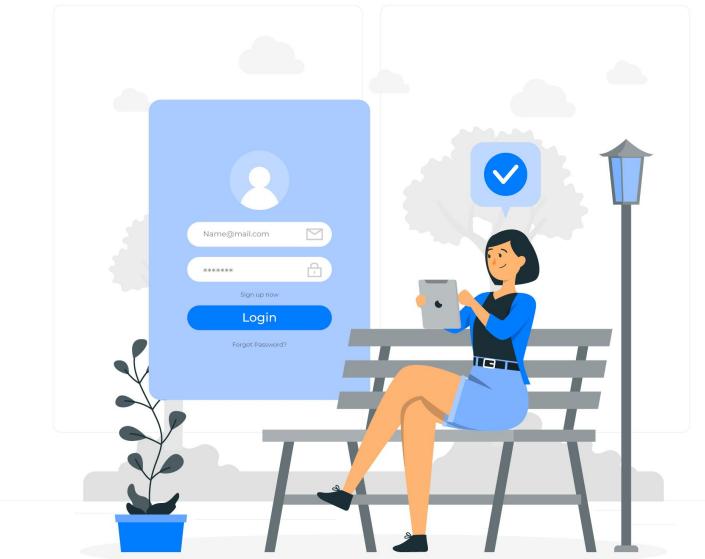
- During the course of an identity's lifetime, it may be necessary to **change various attributes** of the user profile for the identity.
 - For example, a user may need to update their email address or phone number, password, name.
- In a company, a user's profile might be updated to reflect a new position, address, or privileges such as roles
- Account **recovery** is a mechanism to validate a user is the legitimate owner of an account through some **secondary means** and then allow the user to establish **new credentials**.
 - **Lost password reset by email**

Deprovisioning


- There may come a time when it is necessary to **close an account**.
- In this case, the user's account and associated identity information must be deprovisioned so that it can no longer be used.
- Deprovisioning may take the form of completely **deleting the account** and associated identity information or simply **disabling** the account, to preserve information for audit purposes

Identity and Access Management

Identity and Access Management (IAM)


An **Identity and Access Management (IAM)** is a set of services that support the **creation, modification, and removal** of identities and associated accounts, as well as the **authentication and authorization** required to access resources.

A **digital resource** is any **combination of applications** and **data** in a computer system. Ex. web applications, APIs, platforms, devices, or databases.

Identity and access management verifies the user and controls their access to the resource.

Identity and Access Management (IAM)

Verification of ownership:

- Identification
- Authentication
- Authorization

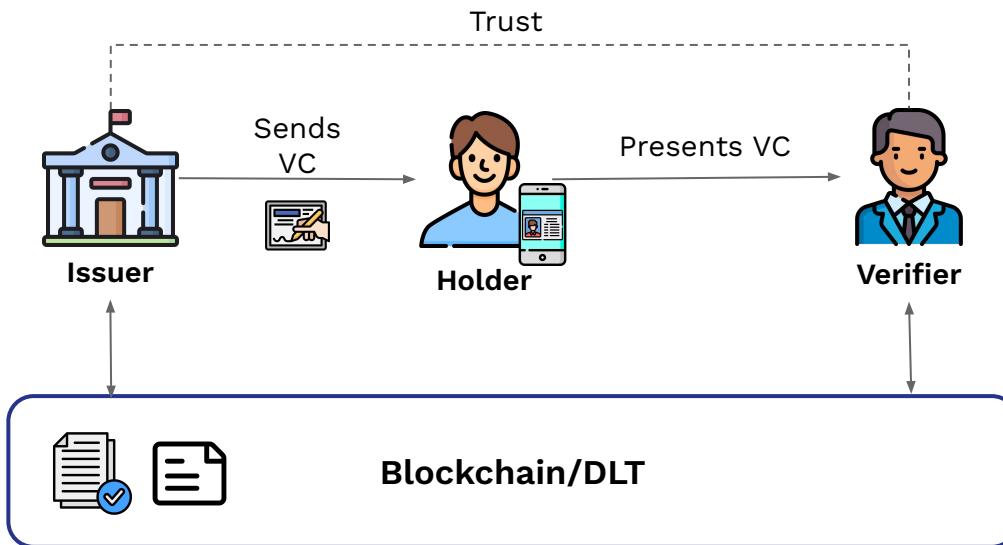
IAM evolution

Self-Sovereign Identity

Self Sovereign Identity (SSI) is a sovereign, durable and portable identity for any person, organization or entity that allows its owner to access all digital services using **verifiable credentials** in a **privacy-preserving** manner.

Why SSI?

A July 2019 study by MobileIron reported in Security InfoCenter said that when users encounter password troubles:


- 68% feel disrupted.
- 63% feel irritated and frustrated.
- 62% feel they have wasted time.

Moreover

- IT security leaders felt they could reduce their risk of breach by almost half (43%) by eliminating passwords.
- 86% of those security leaders would do away with passwords if they could.

Source: [8 in 10 IT Leaders Want to Eliminate Passwords](#)

Self-Sovereign Identity

Verifiable Credentials

A **verifiable credential** is a set of **metadata** and **claims** that cryptographically prove who issued it.

Decentralized Identifiers

did:
 └ example:123456789abcdefgħi
 └ DID Method DID Method-Specific Identifier

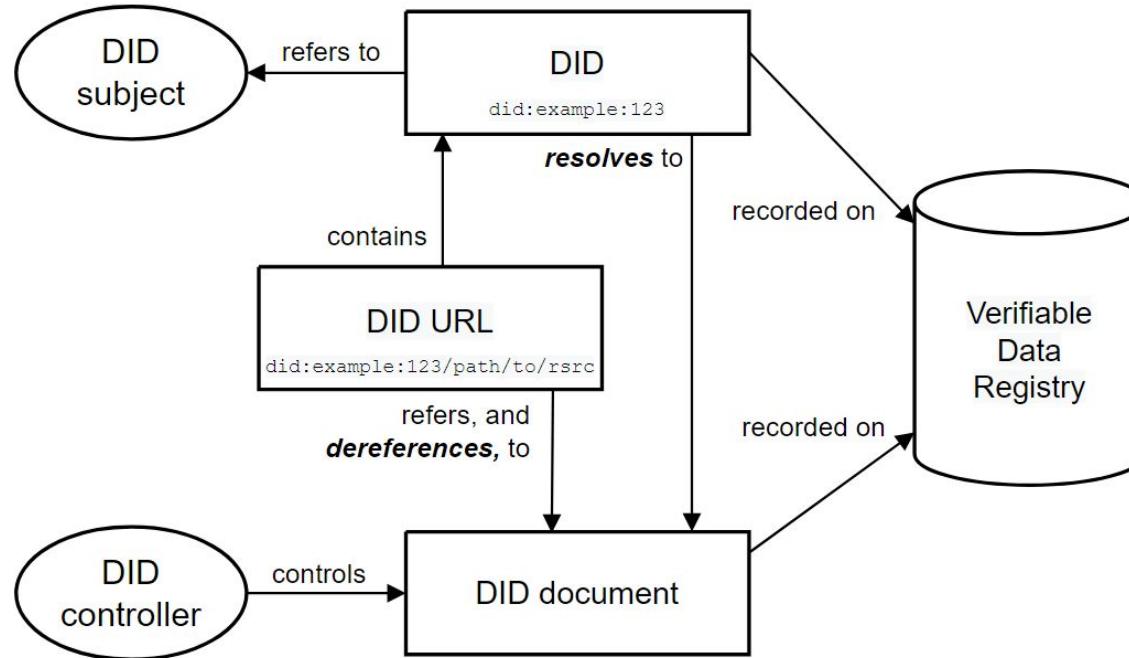
URN-encoded decentralized identifier.

Decentralized Identifiers

A **Decentralized Identifier (DID)** is a new type of globally unique identifier encoded using a **Uniform Resource Name (URN)**. It provides a verifiable and decentralized means for interacting with a DID Subject controlling the DID.

An example DID is:

did:sov:WRfXPg8dantKVubE3HX8pw


- **did** indicates that it is a DID;
- **sov** is the DID Method Name for Sovrin DIDs. All DIDs support the same basic functionality, but they differ in how that functionality is **implemented**, e.g. how exactly a DID is created or where and how a DID's associated DID document is stored and retrieved;
- **WRfXPg8dantKVubE3HX8pw** identifies the DID subject.

DID Methods

- Different DID “methods”:
 - `did:sov:WRfXPg8dantKVubE3HX8pw`
 - `did:btcr:xz35-jzv2-qqz2-9wjt`
 - `did:v1:test:nym:3AEJTDMSSxDDQpyUftju`
`oeZ2Bazp4Bswj1ce7FJGybCUu`
 - `did:uport:2omWsSGspY7zhxaG6uHyoGt`
`cYxoGeeohQXz`
 - `did:erc725:ropsten:2F2B37C890824242`
`Cb9B0FE5614fA2221B79901E`
- DID methods need a method specification.
- Define method-specific syntax.
- Define method-specific **CRUD** operations:
Create, Read (Resolve), Update, Delete (Revoke)


Method	DID Prefix
Sovrin	<code>did:sov:</code>
Veres One	<code>did:v1:</code>
uPort	<code>did:uport:</code>
Bitcoin	<code>did:btcr:</code>
Blockstack	<code>did:stack:</code>
ERC725	<code>did:erc725:</code>
IPFS	<code>did:ipid:</code>

DID architecture

DID Resolution

- DID Resolution: DID → DID Document
 - Set of public keys
 - Set of service endpoints
 - Authentication methods
 - Timestamps, proofs
 - Other identifier metadata
- May be dynamically constructed rather than actually stored in this form.
- Can support resolution parameters.
- Can return resolution metadata.

DID document

```
1
2  {
3      "@context": [
4          "https://www.w3.org/ns/did/v1",
5          "https://w3id.org/security/suites/ed25519-2020/v1"
6      ]
7      "id": "did:example:123456789abcdefghi",
8      "controller": "did:example:123456789abcdefghi",
9
10     "authentication": [
11
12         {
13             "id": "did:example:123456789abcdefghi#keys-1",
14             "type": "Ed25519VerificationKey2020",
15             "controller": "did:example:123456789abcdefghi",
16             "publicKeyMultibase": "zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
17         }
18     ]
19 }
```

DID Universal Resolver

The **Universal Resolver** resolves **Decentralized Identifiers (DIDs)** across many different **DID methods**, based on the W3C DID Core 1.0 and DID Resolution specifications. It is a work item of the DIF Identifiers&Discovery Working Group.

- Looks up (“resolves”) DID to its DID Document.
- Provides a universal API that works with all DID methods.
- Uses a set of configurable “drivers” that know how to connect to the target system.

Link: <https://dev.uniresolver.io/>

Github link: <https://github.com/decentralized-identity/universal-resolver>

DID Universal Resolver

DIF Universal Resolver

Supported methods: did:ala did:algo did:bbn did:bid did:btcr did:ccp did:cheqd did:com did:content did:ddns did:dock did:dyne did:ebsi did:elem did:emtrust did:ens did:eosio did:ethr did:ev did:evan did:evscale did:evrc did:factom did:gatc did:github did:icr did:icon did:id did:indy did:io did:ion did:iscc did:itn did:jolo did:jwk did:keri did:key did:kilt did:ksirc did:lift did:meta did:moncon did:mydata did:ont did:orb did:oyd did:pdv did:peer did:ph did:plc did:polygonid did:schema did:sol did:sov did:stack did:tys did:tz did:unisot did:v1 did:vaa did:web did:webs Contribute a driver?

did-url did:ethr:mainnet:0x3b0bc51ab9de1e5b7b6e34e5b960285805c41736 **Resolve** Clear Examples ↴ **DID examples**

Copy link to result **Check Compliance**

RESULT DID DOCUMENT RESOLUTION METADATA DOCUMENT METADATA

Parser

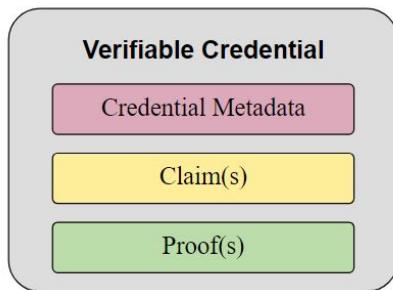
did	method	method-specific-id	path-abempty	query	fragment
did:ethr:mainnet:0x3b0bc51ab9de1e5b7b6e34e5b960285805c41736	ethr	mainnet:0x3b0bc51ab9de1e5b7b6e34e5b960285805c41736			

Services
(none)

Verification Methods

🔑 EcdsaSecp256k1RecoveryMethod2020
did:ethr:mainnet:0x3b0bc51ab9de1e5b7b6e34e5b960285805c41736#controller
eip155:1:0x3b0BC51Ab9De1e5B7B6E34E5B960285805C41736

Example: <https://dev.uniresolver.io/#did:ethr:mainnet:0x3b0bc51ab9de1e5b7b6e34e5b960285805c41736>


DID example

Verifiable Credentials

A **credential** is a set of one or more claims made by an issuer.

A **verifiable credential** is a set of tamper-evident claims and metadata that cryptographically prove who issued it.

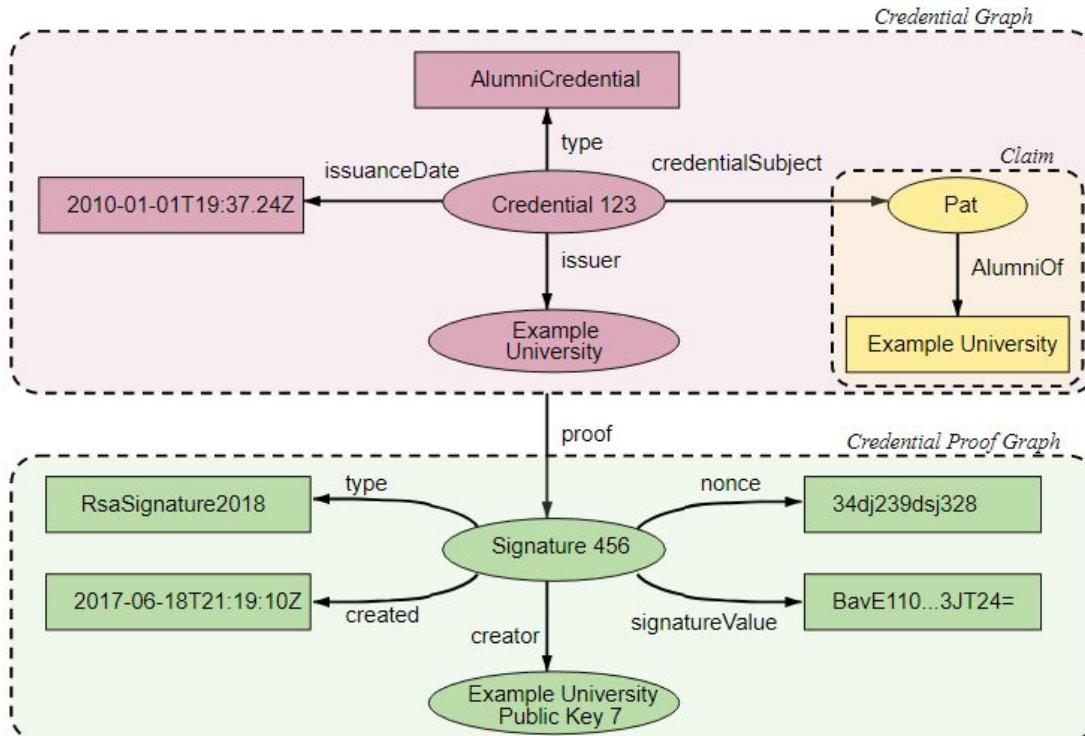
Credentials might also include an identifier and metadata to describe properties of the credential, such as:

- the issuer;
- the expiry date and time;
- a representative image;
- a public key to use for verification purposes;
- the revocation mechanism and so on.


VC example

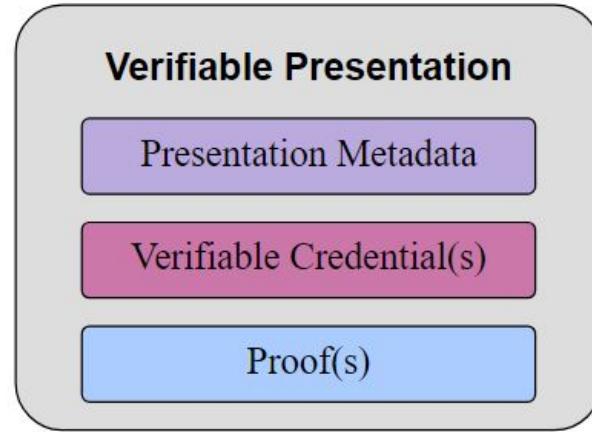
```
{  
  "@context": [  
    "https://www.w3.org/2018/credentials/v1",  
    "https://www.w3.org/2018/credentials/examples/v1"  
,  
  "id": "http://example.edu/credentials/3732",  
  "type": ["VerifiableCredential", "UniversityDegreeCredential"],  
  "issuer": "https://example.edu/issuers/565049",  
  "issuanceDate": "2010-01-01T00:00:00Z",  
  "credentialSubject": {  
    "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",  
    "degree": {  
      "type": "BachelorDegree",  
      "name": "Bachelor of Science and Arts"  
    }  
  }  
}
```

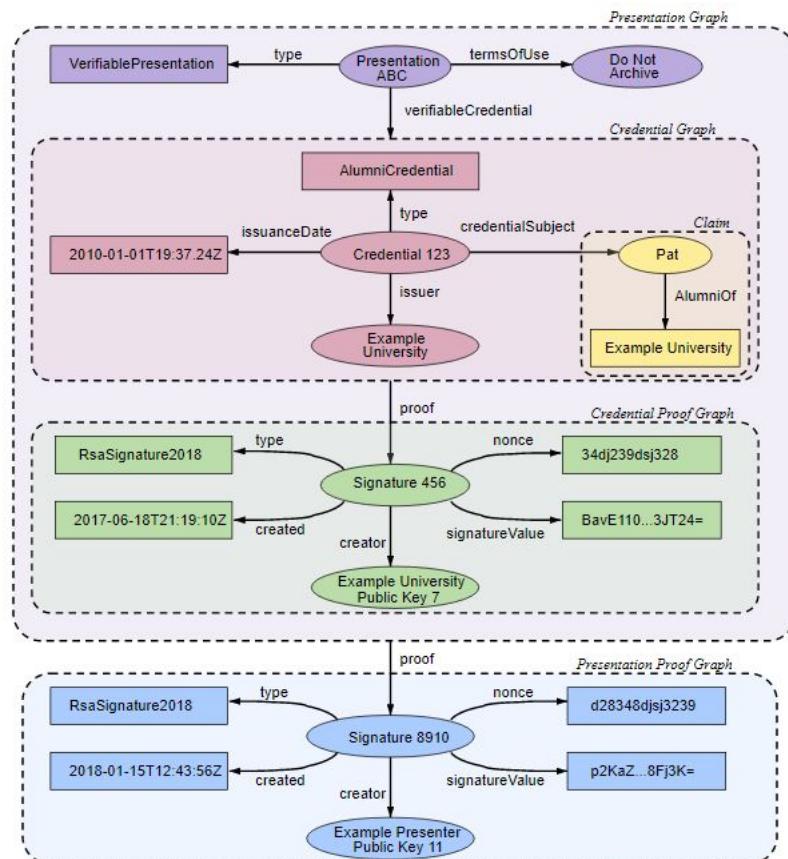
The example uses two types of identifiers. The first identifier is for the verifiable credential and uses an **HTTP-based URL**. The second identifier is for the subject of the verifiable credential (the thing the claims are about) and uses a **decentralized identifier**, also known as a DID.


Attestation

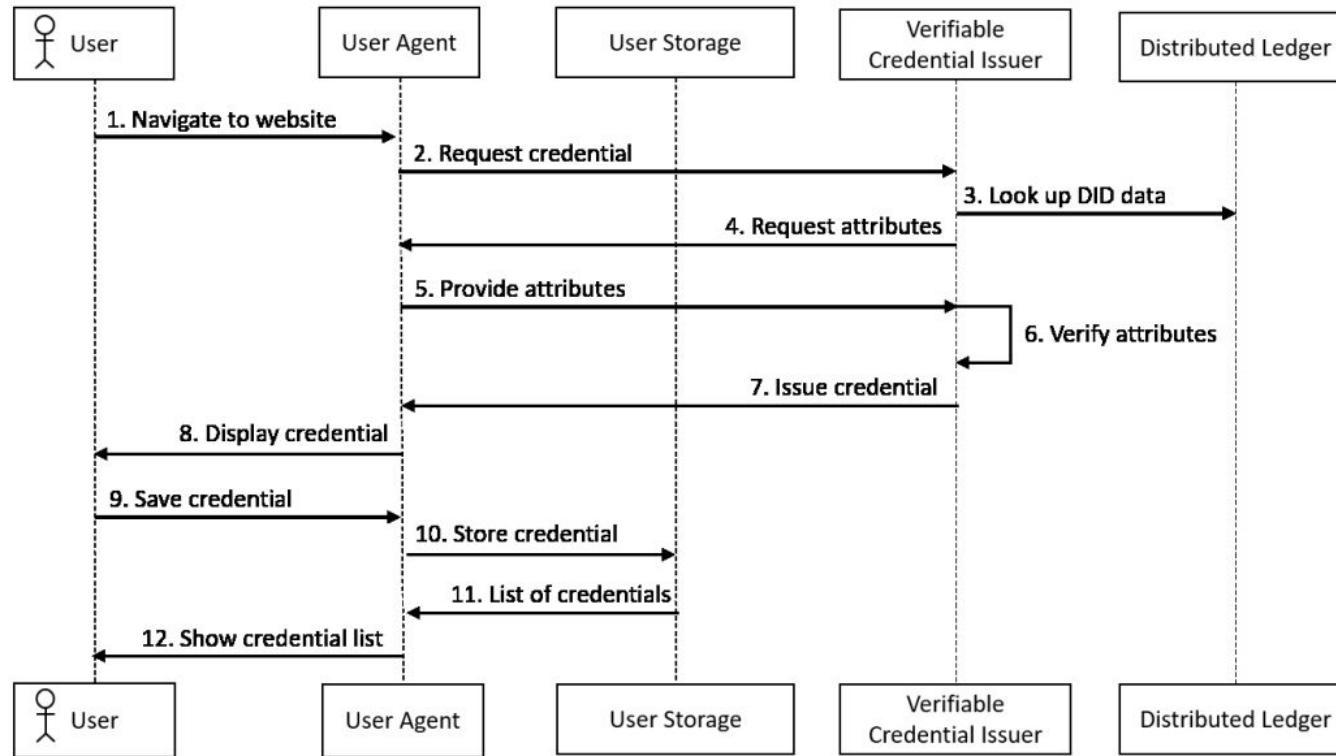
Verifiable credentials are verifiable through a **signature** of an **attestation issuer** that has either issued the claim himself or can attest the correctness of it .

An **attestation** can be seen as a **proof** in form of a **signature** attesting to a certain claim and metadata needed for verification .


Verifiable Credential

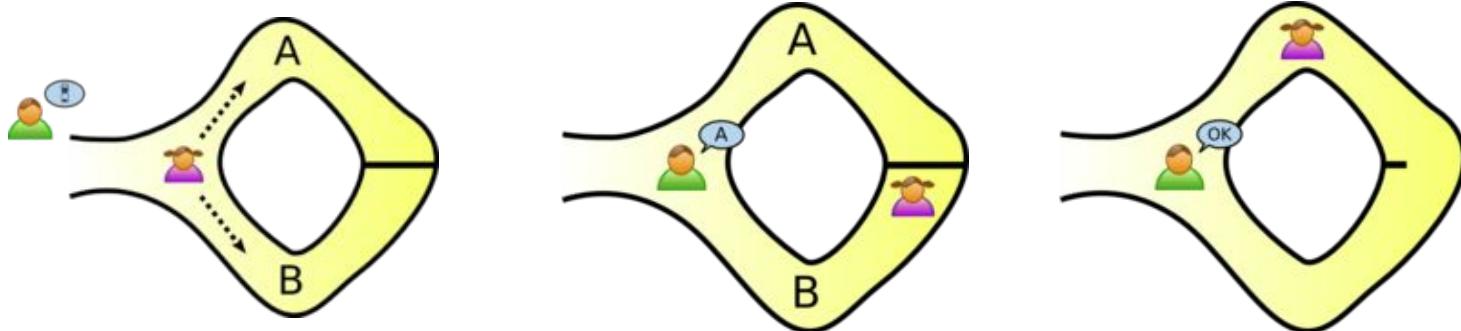

Verifiable Presentation

A **verifiable presentation (VP)** expresses data from **one or more verifiable credentials** and is packaged in such a way that the authorship of the data is verifiable.


Presentations may be used to combine and present credentials. The data in a presentation is often about the same subject, but might have been issued by multiple issuers.

VP example

VC workflow



Credential workflow [15].

Zero-Knowledge Proof

Zero Knowledge Proof (ZKP) is a digital method whereby one party proves to another party the **possession of information without revealing it**.

Since Victor would choose A or B at random, she would have a **50% chance** of guessing correctly. If they were to **repeat** this trick many times, say **20 times** in a row, her chance of successfully anticipating all of Victor's requests would be reduced to **1 in 2^{20} , or 9.54×10^{-7}** .

The Ali Baba cave example [\[14\]](#).

References

1. *Identity fundamentals*, Auth0. Available at:
<https://auth0.com/docs/get-started/identity-fundamentals>
2. Mühle, Alexander, et al. "A survey on essential components of a self-sovereign identity." Computer Science Review 30 (2018): 80-86.
3. Preukschat, Alex, and Drummond Reed. Self-sovereign identity. Manning Publications, 2021.
4. Epping, M. & Morowczynski, M., (2021) "Authentication and Authorization (v2)", IDPro Body of Knowledge 1(10). doi: <https://doi.org/10.55621/idpro.78>
5. *About SSO*, Google Workspace Admin Help. Available at:
<https://support.google.com/a/answer/60224?hl=en>
6. Radha, V., and D. Hitha Reddy. "A survey on single sign-on techniques." Procedia Technology 4 (2012): 134-139.

References

7. Preukschat, A. (2018) “*DID resolution: Given a did how do I retrieve its document?*”, SSI Meetup. Available at:
<https://ssimeetup.org/did-resolution-given-did-how-do-retrieve-document-markus-sabadello-webinar-13/>.
8. P. Grassi, M. Garcia, e J. Fenton, “*Strong Authentication*”, giu. 2017, doi:
<https://doi.org/10.6028/NIST.SP.800-63-3>.
9. Hultgren, Andrew J. “*A Holistic View of Identity Theft Tax Refund Fraud.*” (2019).
10. *Verifiable credentials data model V1.1*, W3C. Available at:
<https://www.w3.org/TR/vc-data-model/>
11. *Mobileiron research reveals 8 in 10 it leaders want to eliminate passwords and expect mobile devices to become primary authentication to the Enterprise* (2019) Business Wire. Available at: <https://www.businesswire.com/news/home/20190627005221/en>

References

12. Commision, FEDERAL TRADE. “*Consumer Sentinel Network Data Book 2021*.” (2022).
13. Chenchev, I., Aleksieva-Petrova, A., Petrov, M. (2021). “*Authentication Mechanisms and Classification: A Literature Survey*”. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-80129-8_69
14. Quisquater, JJ. et al. (1990). “*How to Explain Zero-Knowledge Protocols to Your Children*”. In: Brassard, G. (eds) Advances in Cryptology — CRYPTO’ 89 Proceedings. CRYPTO 1989. Lecture Notes in Computer Science, vol 435. Springer, New York, NY. https://doi.org/10.1007/0-387-34805-0_60
15. Dib, Omar and Toumi, Khalifa, “*Decentralized Identity Systems: Architecture, Challenges, Solutions and Future Directions*” (December 20, 2020). Annals of Emerging Technologies in Computing (AETiC), Print ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 19-40, Vol. 4, No. 5 (2020), Published by International Association of Educators and Researchers (IAER), DOI: 10.33166/AETiC.2020.05.002, Available at SSRN: <https://ssrn.com/abstract=3785452>
16. Images designed by [Freepik](#)
17. Icons designed by [Flaticon](#)